Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609074

RESUMO

The tropical brown dog tick, Rhipicephalus linnaei, is a tick of much medical, veterinary, and zoonotic importance. This tick has a nearly world-wide distribution due to its ability to survive and propagate in kennels and houses. Rhipicephalus linnaei is the vector of Ehrlichia canis, the causative agent of canine monocytic ehrlichiosis, an often debilitating disease of canids and, occasionally, humans. To prevent incursion of E. canis into Australia, dogs entering Australia have been required to have a negative immunofluorescence antibody test for E. canis. In May 2020 however, E. canis was detected in Western Australia. The detection of E. canis in Australia prompted disease investigation and concerted surveillance for R. linnaei and E. canis in regions across Australia. These investigations revealed that R. linnaei was established far beyond the previously recognised geographic limits of this tick. In the present paper, using records from various collections, published data, and data from our network of veterinarian collaborators and colleagues, we update the current geographic limits of R. linnaei in Australia. Our analyses revealed that the geographic range of R. linnaei in Australia is much wider than was previously supposed, particularly in Western Australia, and in South Australia. We also map, for the first time, where E. canis has been detected in Australia. Last, we discuss the possible routes of incursion and subsequently the factors which may have aided the spread of E. canis in Australia which led to the establishment of this pathogen in Australia.

2.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480255

RESUMO

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Assuntos
Carrapatos , Animais , Queensland , Amblyomma , Papua Nova Guiné , Austrália
3.
Med Vet Entomol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469668

RESUMO

We used entire mitochondrial (mt) genome sequences (14.5-15 kbp) to resolve the phylogeny of the four main lineages of the Haematobothrion ticks: Alloceraea, Archaeocroton, Bothriocroton and Haemaphysalis. In our phylogenetic trees, Alloceraea was the sister to Archaeocroton sphenodonti, a tick of an archetypal reptile, the tuatara, from New Zealand, to the exclusion of the rest of the species of Haemaphysalis. The mt genomes of all four of the Alloceraea species that have been sequenced so far had a substantial insert, 132-312 bp, between the tRNA-Glu (E) gene and the nad1 gene in their mt genomes. This insert was not found in any of the other eight subgenera of Haemaphysalis. The mt genomes of 13 species of Haemaphysalis from NCBI GenBank were added to the most recent data set on Haemaphysalis and its close relatives to help resolve the phylogeny of Haemaphysalis, including five new subgenera of Haemaphysalis not previously considered by other authors: Allophysalis (structurally primitive), Aboimisalis (structurally primitive), Herpetobia (structurally intermediate), Ornithophysalis (structurally advanced) and Segalia (structurally advanced). We elevated Alloceraea Schulze, 1919 to the status of genus because Alloceraea Schulze, 1919 is phylogenetically distinct from the other subgenera of Haemaphysalis. Moreover, we propose that the subgenus Allophysalis is the sister to the rest of the Haemaphysalis (14 subgenera) and that the 'structurally primitive' subgenera Hoogstraal and Kim comprise early diverging lineages. Our matrices of the pairwise genetic difference (percent) of mt genomes and partial 16S rRNA sequences indicated that the mt genome sequence of Al. kitaokai (gb# OM368280) may not be Al. kitaokai Hoogstraal, 1969 but rather another species of Alloceraea. In a similar way, the mt genome sequence of H. (Herpetobia) nepalensis Hoogstraal, 1962 (gb# NC_064124) was only 2% genetically different to that of H. (Allophysalis) tibetensis Hoogstraal, 1965 (gb# OM368293): this indicates to us that they are the same species. Alloceraea cretacea may be better placed in a genus other than Alloceraea Schulze, 1919. Reptiles may have been the host to the most recent common ancestor of Archaeocroton and Alloceraea.

4.
Zootaxa ; 5253(1): 1-670, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044756

RESUMO

The present work is an update and a substantial expansion of Barker & Walker (2014). Barker & Walker (2014) dealt with 16 species of particular importance to domestic animals and humans whereas the present work deals with all 125 of the species known from Australasia; that is Australia, New Zealand, the island of New Guinea, Sulawesi, and the islands of the western Pacific. These comprise 102 species of ixodid (hard) ticks and 23 species of argasid (soft) ticks.


Assuntos
Argasidae , Ixodidae , Carrapatos , Animais , Humanos , Animais Domésticos , Austrália , Australásia
5.
Int J Parasitol ; 53(1): 43-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462559

RESUMO

We studied 22,840 cases of tick paralysis in dogs and cats that were attributable to infestation with the eastern paralysis tick, Ixodes holocyclus. We report that the mortality rates from the holocyclotoxins of the tick or from euthanasia due to complications arising from tick paralysis in dogs and cats were 10% and 8%, respectively. The distribution of cases of tick paralysis among the 52 weeks of 22 years (1999 to 2020, inclusive) in four regions along the eastern coast of Australia revealed much about how the life-cycle of this tick varied among regions. The four regions in our study were: (i) Cairns, Innisfail, and surrounding postcodes in Far North Queensland; (ii) South East Queensland; (iii) Northern Beaches of Sydney in New South Wales; and (iv) the Shire of East Gippsland in Victoria. We found that the season of tick paralysis started earlier in more northerly latitudes than in more southerly latitudes. We also found that Victoria has two seasons of tick paralysis, one from approximately the third week of February to the first week of May, and another from approximately the third week of September to the third week of December, whereas all of the other regions we studied in eastern Australia only had one season of tick paralysis. When we studied the two seasons of tick paralysis in Victoria, we found a statistically significant negative correlation between the number of cases of tick paralysis between the two seasons: the more cases in one season, the fewer the cases in the next season. One possible explanation for the negative correlation may be immunity to I. holocyclus acquired by dogs and cats in the first season.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Paralisia por Carrapato , Gatos , Animais , Cães , New South Wales/epidemiologia , Vitória , Queensland/epidemiologia , Estações do Ano , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária , Doenças do Cão/epidemiologia
6.
Ticks Tick Borne Dis ; 14(2): 102070, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36455382

RESUMO

Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the "structurally advanced"; (ii) the "structurally intermediate"; and (iii) the "structurally primitive" subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the "structurally intermediate" subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the "structurally primitive", "structurally intermediate" nor the "structurally advanced" groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of "primitive" Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.


Assuntos
Genoma Mitocondrial , Ixodidae , Rhipicephalus , Animais , Ixodidae/genética , Filogenia , Genes de RNAr , Rhipicephalus/genética , Amblyomma/genética
7.
Zootaxa ; 5325(4): 529-540, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220895

RESUMO

A new subgenus, Australixodes n. subgen., is described for the kiwi tick, Ixodes anatis Chilton, 1904. The subgenus Coxixodes Schulze, 1941 is validated for the platypus tick, Ixodes (Coxixodes) ornithorhynchi Lucas, 1846, sister group of the subgenus Endopalpiger Schulze, 1935. A phylogeny from mitochondrial genomes of 16 of the 22 subgenera of Ixodes (32 spp.) indicates, for the first time, the relationships of the subgenera of Ixodes Latreille, 1795, the largest genus of ticks.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Animais , Ixodes/genética , Ixodidae/genética , Filogenia
8.
Parasit Vectors ; 15(1): 117, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365195

RESUMO

BACKGROUND: Ixodes barkeri, a tick with a distinctive ventrolateral horn-like projection on palpal segment 1, was described in 2019 from two male ticks from the Wet Tropics of Far North Queensland, Australia. However, females lie at the core of the taxonomy and subgenus classification of Ixodes; hence, we sought specimens of female ticks, successfully recovering females, plus nymphs and larvae. Mitochondrial genomes are also desirable additions to the descriptions of species of ticks particularly regarding subgenus systematics. So, we sequenced the mt genomes of I. barkeri Barker, 2019, and the possible relatives of I. barkeri that were available to us (I. australiensis Neumann, 1904, I. fecialis Warburton & Nuttall, 1909, and I. woyliei Ash et al. 2017) with a view to discovering which if any of the subgenera of Ixodes would be most suitable for I. barkeri Barker, 2019. RESULTS: The female, nymph, larva and mitochondrial genome of Ixodes barkeri Barker, 2019, are described for the first time and the male of I. barkeri is redescribed in greater detail than previously. So far, I. barkeri is known only from a monotreme, the short-beaked echidna, Tachyglossus aculeatus (Shaw, 1792), from the highland rainforests of the Wet Tropics of Far North Queensland, Australia. CONCLUSIONS: Our phylogeny from entire mitochondrial genomes indicated that I. barkeri and indeed I. woyliei Ash et al., 2017, another tick that was described recently, are best placed in the subgenus Endopalpiger Schulze, 1935.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Tachyglossidae , Animais , Feminino , Ixodes/genética , Ixodidae/genética , Larva/genética , Masculino , Ninfa/genética
9.
Int J Parasitol Parasites Wildl ; 18: 1-11, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35371916

RESUMO

We: (i) report the rediscovery of Ixodes (Sternalixodes) confusus Roberts, 1960 in Australia; (ii) redescribe the male and female of I. confusus; (iii) describe the mitochondrial (mt) genome of I. confusus from five ticks from four localities in Far North Queensland; and (iv) present the first substantial phylogeny of the subgenera of the Ixodes. The mt genomes of I. confusus, I. cornuatus, I. hirsti, I. myrmecobii and I. trichosuri are presented here for the first time. In our phylogeny from entire mt genomes (ca. 15 kb), the subgenus Endopalpiger was the sister-group to subgenera Sternalixodes plus Ceratixodes plus Exopalpiger whereas Exopalpiger was the sister to Sternalixodes plus Ceratixodes. [i.e. ((Endopalpiger) (Sternalixodes, Ceratixodes and Exopalpiger))]. Finally, we show that Ixodes anatis, the kiwi tick, may be closely related to the ticks of marsupials of Australia and Papua New Guinea.

10.
Ticks Tick Borne Dis ; 13(1): 101832, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607157

RESUMO

High-throughput sequencing (HTS) technology has profoundly been involved in sequencing whole genomes of several organisms in a fast and cost-effective manner. Although HTS provides an alternative biomonitoring method to the time-consuming and taxonomy-expertise dependent morphological approach, still we cannot rule out the possibility of the impediment and misidentification biases. In this article we aim to retrieve whole mitochondrial genome (mitogenome) sequences from publicly available raw sequencing data for phylogenetic comparison of Ixodes persulcatus. For this comparison, we sequenced whole mitogenomes of four I. persulcatus ticks from Japan and constructed mitogenomes from raw sequencing data of 74 I. persulcatus ticks from China. Bayesian phylogenetic trees were inferred by the concatenated fifteen mitochondrial genes. We further tested our results by the phylogenetic analysis of cytochrome c oxidase subunit 1 (cox1) gene and internal transcribed spacer 2 (ITS2) sequences. Our findings showed that 70 constructed mitogenomes from China were clustered with the sequenced four mitogenomes of I. persulcatus from Japan. We also revealed that mitogenome sequences retrieved from two data sets CRR142297 and CRR142298 were clustered with Ixodes nipponensis. Moreover, other two mitogenome sequences from CRR142310 and CRR142311 formed a clade with Ixodes pavlovskyi. The phylogenetic analysis of cox1 gene and ITS2 sequences confirmed the identification errors of these four samples. The overall phylogenetics in our study concluded that accurate morphological identification is necessary before implementing HTS to avoid any misidentification biases.


Assuntos
Genoma Mitocondrial , Ixodes , Animais , Teorema de Bayes , China , Filogenia
11.
Ticks Tick Borne Dis ; 12(5): 101758, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153869

RESUMO

The southern paralysis tick, Ixodes cornuatus, is a tick of veterinary and medical importance in Australia. We use two methods, CLIMEX, and an envelope-model approach which we name the 'climatic-range method' to study the climatic requirements of I. cornuatus and thus to attempt to account for the geographic distribution of I. cornuatus. CLIMEX and our climatic-range method allowed us to account for 94% and 97% of the records of I. cornuatus respectively. We also studied the host preferences of I. cornuatus which we subsequently used in conjunction with our species distribution methods to account for the presence and the absences of I. cornuatus across Australia. Our findings indicate that the actual geographic distribution of I. cornuatus is smaller than the potential geographic range of this tick, and thus, that there are regions in Australia which may be suitable for I. cornuatus where this tick has not been recorded. Although our findings indicate that I. cornuatus might be able to persist in these currently unoccupied regions, our findings also indicate that the potential geographic range of I. cornuatus may shrink by 51 to 76% by 2090, depending on which climate change scenario comes to pass.


Assuntos
Distribuição Animal , Mudança Climática/estatística & dados numéricos , Marsupiais/parasitologia , Modelos Estatísticos , Animais , Austrália , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Humanos , Ixodes , Mamíferos/parasitologia , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária
12.
Ticks Tick Borne Dis ; 12(4): 101688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652332

RESUMO

Argasid systematics remains controversial with widespread adherence to the Hoogstraal (1985) classification scheme, even though it does not reflect evolutionary relationships and results in paraphyly for the main genera of soft ticks (Argasidae), namely Argas and Ornithodoros. The alternative classification scheme, proposed by Klompen and Oliver (1993), has problems of its own: most notably paraphyly of the subgenus Pavlovskyella and the controversial grouping together of the subgenera Alectorobius, Antricola, Carios, Chiropterargas, Nothoaspis, Parantricola, Reticulinasus and Subparmatus into the genus Carios. Recent phylogenetic analyses of 18S/28S rRNA sequences and mitochondrial genomes agree with the scheme of Klompen and Oliver (1993), with regard to the paraphyly of Pavlovskyella, placement of Alveonasus, Ogadenus, Proknekalia and Secretargas in the Argasinae and placement of Carios and Chiropterargas in the Ornithodorinae (Mans et al., 2019). The Carios clade and its constituent subgenera remain controversial, since the phylogenetic position of its type species Carios (Carios) vespertilionis Latreille, 1796 (formerly Argas vespertilionis) has not been determined with confidence. The current study aimed to resolve Carios sensu lato Klompen and Oliver, 1993, and Carios sensu stricto Hoogstraal, 1985, by determining and analysing phylogenetic nuclear and mitochondrial markers for C. (C.) vespertilionis. Both the nuclear and mitochondrial markers support placement of Carios s.s. within the subfamily Ornithodorinae, but to the exclusion of the clade that includes the 6 other subgenera that are part of Carios s.l. Klompen and Oliver (1993), namely Alectorobius, Antricola, Nothoaspis, Parantricola, Reticulinasus and Subparmatus. These 6 subgenera form a monophyletic clade that might be placed as new subgenera within the genus Alectorobius, or elevated to genera. Given the substantial differences in biology among these subgenera, we propose that these 6 subgenera be elevated to genera. Thus, we propose to modify the classification scheme of Mans et al. (2019) so that the subfamily Argasinae now has six genera, Alveonasus, Argas (subgenera Argas and Persicargas), Navis, Ogadenus, Proknekalia and Secretargas, and the subfamily Ornithodorinae has nine genera, Alectorobius, Antricola (subgenera Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (subgenera Microargas, Ornamentum, Ornithodoros, Pavlovskyella and Theriodoros), Otobius, Reticulinasus and Subparmatus (genera indicated in bold).


Assuntos
Argasidae/classificação , Genoma Mitocondrial , Animais , Argas/classificação , Argas/genética , Argas/crescimento & desenvolvimento , Argasidae/genética , Argasidae/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Ornithodoros/classificação , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 18S/análise , RNA Ribossômico 28S/análise
13.
Int J Parasitol ; 51(4): 241-249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513402

RESUMO

The eastern paralysis tick, Ixodes holocyclus, is an ectoparasite of medical and veterinary importance in Australia. The feeding of I. holocyclus is associated with an ascending flaccid paralysis which kills many dogs and cats each year, with the development of mammalian meat allergy in some humans, and with the transmission of Rickettsia australis (Australian scrub typhus) to humans. Although I. holocyclus has been well studied, it is still not known exactly why this tick cannot establish outside of its present geographic distribution. Here, we aim to account for the presence as well as the absence of I. holocyclus in regions of Australia. We modelled the climatic requirements of I. holocyclus with two methods, CLIMEX, and a new envelope-model approach which we name the 'climatic-range method'. These methods allowed us to account for 93% and 96% of the geographic distribution of I. holocyclus, respectively. Our analyses indicated that the geographic range of I. holocyclus may not only shift south towards Melbourne, but may also expand in the future, depending on which climate-change scenario comes to pass.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Animais , Austrália , Gatos , Cães , Hipersensibilidade Alimentar , Paralisia , Rickettsia
14.
Ticks Tick Borne Dis ; 12(1): 101577, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120251

RESUMO

The evolution and phylogenetic relationships of the ticks at both the family and genus levels are contested. The genus Amblyomma and its subgenera are in a state of flux; moreover, the relationships among the three tick families are controversial due to conflicting phylogenetic support for different arrangements of the three families of living ticks. With 18 newly sequenced mitochondrial (mt) genomes of ticks included, we executed the largest mt genome phylogenetic study of ticks so far. Phylogenetic trees were inferred from one sea spider mt genome, one horseshoe crab, five mite mt genomes and 146 tick mt genomes from 120 species: 153 mt genomes in total. Sixteen phylogenetic trees were inferred from 10 datasets using both maximum likelihood and Bayesian inference methods. We describe the first novel mt gene-arrangement for the metastriate Ixodidae in Amblyomma (Africaniella) transversale. Also, three unusual partial 16S rRNA gene inserts were found in the mt genome of Haemaphysalis (Alloceraea) kitaokai: we consider the possible role of past genome translocation events in the formation of these inserts. Our phylogenies revealed evidence that: (i) the genus Amblyomma is polyphyletic with respect to Amblyomma (Africaniella) transversale; (ii) the subgenus Aponomma is apparently embedded in the genus Amblyomma; (iii) Haemaphysalis (Segalia) parva and Haemaphysalis (Alloceraea) kitaokai form a clade to the exclusion of other Haemaphysalis species; and (iv) the phylogenetic position of the family Nuttalliellidae is unstable among phylogenies from different datasets.


Assuntos
Amblyomma/genética , Argasidae/classificação , Evolução Biológica , Genoma Mitocondrial , Ixodidae/classificação , Filogenia , Animais
15.
Zootaxa ; 4658(2): zootaxa.4658.2.7, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31716747

RESUMO

A new species of Ixodes is described from two male specimens that have a distinctive ventrolateral horn-like projection on palpal article 1. This structure is not found in any other Australian species, but is similar to that of I. zaglossi Kohls, 1960 from the long-beaked echidna of Papua New Guinea. I present a revised key to accommodate the five males of Australian Ixodes described or re-described since 1970. I also briefly review the 26 Australian species of Ixodes.


Assuntos
Ixodes , Ixodidae , Tachyglossidae , Animais , Austrália , Masculino , Papua Nova Guiné
16.
Int J Syst Evol Microbiol ; 68(12): 3781-3784, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30307387

RESUMO

Strain AUS118T was isolated from an Argas lagenoplastis tick collected from the nest of a Petrochelidon ariel (fairy martin) in Australia in 2013. Microscopic observation of infected cell cultures indicated this strain had a morphology and intracellular location typical of Rickettsiaspecies. Phylogenetic analysis of this strain based firstly on multi-locus sequence analysis and subsequently on whole genome analysis demonstrated that AUS118T was most closely related to, but divergent from Rickettsia japonica and Rickettsia heilongjiangensis. We therefore propose the creation of a novel species, Rickettsia fournieri sp. nov, with the type strain AUS118T (DSM 28985 and CSUR R501).


Assuntos
Argas/microbiologia , Filogenia , Rickettsia/classificação , Animais , Austrália , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Rickettsia/genética , Rickettsia/isolamento & purificação , Análise de Sequência de DNA , Rickettsiose do Grupo da Febre Maculosa
17.
Arch Virol ; 163(9): 2451-2457, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29752559

RESUMO

Ixodes holocyclus, the eastern paralysis tick, is a significant parasite in Australia in terms of animal and human health. However, very little is known about its virome. In this study, next-generation sequencing of I. holocyclus salivary glands yielded a full-length genome sequence which phylogenetically groups with viruses classified in the Iflaviridae family and shares 45% amino acid similarity with its closest relative Bole hyalomma asiaticum virus 1. The sequence of this virus, provisionally named Ixodes holocyclus iflavirus (IhIV) has been identified in tick populations from northern New South Wales and Queensland, Australia and represents the first virus sequence reported from I. holocyclus.


Assuntos
Ixodes/virologia , Vírus de RNA/isolamento & purificação , Sequência de Aminoácidos , Animais , Austrália , Gatos/parasitologia , Cães/parasitologia , Ixodes/genética , Ixodes/fisiologia , Dados de Sequência Molecular , Filogenia , Vírus de RNA/química , Vírus de RNA/classificação , Vírus de RNA/genética , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
18.
Vector Borne Zoonotic Dis ; 18(3): 151-163, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29336689

RESUMO

Central Queensland (CQ) is a large and isolated, low population density, remote tropical region of Australia with a varied environment. The region has a diverse fauna and several species of ticks that feed upon that fauna. This study examined 518 individual ticks: 177 Rhipicephalus sanguineus (brown dog tick), 123 Haemaphysalis bancrofti (wallaby tick), 102 Rhipicephalus australis (Australian cattle tick), 47 Amblyomma triguttatum (ornate kangaroo tick), 57 Ixodes holocyclus (paralysis tick), 9 Bothriocroton tachyglossi (CQ short-beaked echidna tick), and 3 Ornithodoros capensis (seabird soft tick). Tick midguts were pooled by common host or environment and screened for four genera of tick-borne zoonoses by PCR and sequencing. The study examined a total of 157 midgut pools of which 3 contained DNA of Coxiella burnetii, 13 Rickettsia gravesii, 1 Rickettsia felis, and 4 other Rickettsia spp. No Borrelia spp. or Babesia spp. DNA were recovered.


Assuntos
Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/microbiologia , Carrapatos/parasitologia , Animais , Babesia/genética , Aves/parasitologia , Borrelia/genética , Coxiella burnetii/genética , Mamíferos/parasitologia , Epidemiologia Molecular , Queensland/epidemiologia , Rickettsia/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...